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Highlights: 

 

• We give an up-to-date assessment of costs and benefits of Germany ׳s Energiewende. 

• We compare solar PV and wind to show key elements of policy success. 

• Considered policy objectives: competitiveness, innovation, jobs, emissions, costs. 

• Wind energy seems to perform better than solar PV against all policy objectives. 

• The results are a snapshot: a deep transformation requires energy diversification. 

 

 

Abstract: 

 

In this paper, we address the challenge of Germany’s energy transition (Energiewende) as 

the centrepiece of the country’s green industrial policy. In addition to creating a sustainable 

foundation for Germany’s energy supply and contributing to global climate change 

objectives, the Energiewende is intended to create a leading position for German industry in 

renewable energy technologies, boost innovative capabilities and create employment 

opportunities in future growth markets. The success in reaching these aims, and indeed the 

future of the entire concept, is fiercely debated.  

The paper aims to provide an up-to-date and balanced assessment of costs and benefits of 

renewable energy support measures. However, since costs and benefits can differ widely 

between targeted technologies, we compare solar photovoltaic (PV) and wind energy to 

illustrate critical elements of green industrial policy success. We find mixed evidence that 

Germany reaches its green industrial policy aims at reasonable costs. Wind energy seems to 

perform better against all policy objectives, while the solar PV sector has come under 

intense pressure from international competition. However, this is only a snapshot of current 

performance, and a dynamic and systemic perspective may nonetheless make the support of 

various renewable energy sources advisable. 

 

Keywords: Green industrial policy; renewable energies; Germany 
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1. Introduction 

 

We know that, if we are to maintain acceptable living conditions for ourselves and our 

descendants, there will need to be a radical change in the way we use the natural resources 

to be found on our planet. Green industrial policy, that is, government intervention to 

hasten the restructuring of the economy towards environmental sustainability (Pegels, 

2014), is a particularly suitable instrument to achieve this radical and long-term transition. 

Governments must intervene, because market mechanisms such as prices alone are failing 

to bring about the drastic and fast changes to the very fabric of our economies required for 

the protection of our planet (Hallegatte et al., 2013). Linking environmental protection to 

such traditional aims of industrial policy as competitiveness, job creation and innovation as 

‘co-benefits’ may help it to win supporters. Environmental sustainability on its own has 

failed to become a driver of structural change in most countries. 

 

However, the multiplicity of aims also renders green industrial policy making more complex. 

The aims are not always in harmony, and vested interests may prevent the required shift 

from polluting to clean economic activities. The energy sector is a prime example for these 

challenges. Energy literally powers economic development. Hence, energy policy must be 

considered as a cornerstone of any industrial policy, regardless of the latter’s specific 

objectives, approach and implementation. Through its impact on energy availability in 

general, and through more specific measures targeting the promotion of different energy 

sources and their relative prices, energy policy has a strong influence on an economy’s 

competitiveness, employment, sectoral diversification patterns, trade position and long-

term technological trajectory.  

 

This has always been the case. However, it applies even more powerfully in a scenario of 

planetary boundaries, global material resource scarcity and climate change that together call 

for a radical rethinking of the manner in which energy has been generated, distributed and 

consumed so far. While notions and concepts of a Third, or New, or Next Industrial 

Revolution are currently proliferating in various manifestations (Rifkin, 2011; Dosi & 

Galambos, 2013; The Economist, 2012; Marsh, 2012; Andersen, 2012), it is evident that a 

long-term transition to a decarbonized energy scenario has to be part and parcel of building 

a sustainable future.  

 

At the same time, energy policy is invariably designed and applied within a veritable 

minefield of stakeholders, interests, conflicts and alliances. It requires a long-term planning 

perspective and a holistic look at political, social, economic and technological challenges and 

scenarios. Above all, energy policy fundamentally determines a country’s future basic 

infrastructure for decades ahead and thus creates strong lock-in effects and path 

dependency. It is a field of economic policy that does not lend itself to frequent shifts and 

reorientations unless huge investments are to be turned into stranded and wasted assets.  

 

The above applies in particular in the context of the German case. The country is in the midst 

of a fundamental energy transition (Energiewende), which involves a complete phase-out of 

nuclear energy and a deliberate policy of reliance on renewable energy sources. This 
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necessitates a basic consensus on societal preferences, resulting energy policy aims and the 

way ahead. In a somewhat stylized perspective, German society has generally been 

characterized by a strong technological risk aversion; more specifically, the nuclear exit 

policy commands broad political and popular support and such technological options as 

carbon capture and storage or hydraulic fracturing meet with strong public opposition. Also, 

climate change considerations figure high on the agenda of societal concerns. The issue of 

energy prices currently somewhat dominates the debate around energy policy, both for 

industrial and household consumption, and this has become one of the essential yardsticks 

for assessing the progress and prospects of the ongoing energy transition towards 

renewables. 

 

Against this backdrop, the present paper reviews the German policy in support of raising the 

share of renewables in the energy mix against the background of the multidimensional set of 

social, economic, technological and ecological objectives which is inherent to green 

industrial policy. The swift transition to various renewable energy sources primarily for 

electricity generation (but also increasingly for heat generation and fuels) constitutes the 

centrepiece of German energy policy. For the purpose of this paper, an exclusive focus on 

electricity generation is adopted. The paper aims to provide an up-to-date and balanced 

assessment of what has become a fierce controversy. However, costs and benefits of policy 

measures can differ widely between targeted technologies. Therefore, we compare solar 

photovoltaic (PV) and wind energy to illustrate critical elements of green industrial policy 

success.  

 

Section 2 presents objectives and measures of the energy transition as the cornerstone of 

green industrial policy in Germany, and presents the methods used to assess their costs and 

benefits. This is a complex undertaking fraught with diverse methodological challenges. 

Often, political positions and lobbying guide seemingly technical calculations. An attempt is 

thus made to rely to the extent possible on quantitative assessments and clearly spell out 

their underlying assumptions. Since results can differ largely among technologies, we 

concentrate on wind and solar PV energy as exemplary cases. Section 3 presents and 

discusses the results of the assessment for both technologies separately and in direct 

comparison. Section 4 concludes by placing the discussion in a systemic perspective of 

Germany’s green industrial policy. 

 

2. Methods 

2.1. The German Energy Transition: Objectives and Measures 

 

A national priority project of the highest order, such as the energy transition, is invariably 

governed by a complex set of objectives. To some extent, these have been officially 

pronounced and codified in legal documents. In addition, they can be derived from 

ministerial policy statements and publications. 
 

With the Renewable Energy Sources Act (EEG) being the most important green energy policy 

law, its expressed policy objectives deserve prime consideration (Renewable Energy Sources 

Act – EEG 2012). In its Article 1 on the purpose of the law, the following objectives are listed: 
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• “Sustainable development of energy supply.” 

• “Protecting our climate and the environment.” 

• “Reducing the costs of energy supply to the national economy.” 

• “Further development of technologies for the generation of electricity from 

renewable energy sources.” 
 

In various publications, statements and speeches by the relevant Government entities 

(Ministry of Environment, Nature and Nuclear Safety; Ministry of the Economy and 

Technology, as well as the Chancellor herself), the energy transition is portrayed as 

contributing to: 
 

• Strengthening Germany’s leading global market position for climate-friendly 

technologies. 

• Ensuring reliable and affordable energy supply to maintain competitiveness. 

• Boosting innovative capabilities of industry. 

• Creating employment opportunities from renewable energy development. 

• Saving scarce resources and reducing import dependency from fossil fuels. 
 

In general, renewable electricity promotion policies in Germany are built around the core 

concept of feed-in tariffs (FiT), complemented by dedicated renewables loan programmes, 

as well as various types of support to research and development activities (R&D) (direct 

funding, demonstration projects, innovation alliances etc.) as part of science and innovation 

policies. Neither local content policies nor government procurement or renewables purchase 

obligations (outside the EEG-FiT, which constitutes a de facto unlimited purchasing 

commitment) are in place at either the federal or the state level.  The German renewables 

policy scenario can thus best be characterized as being a combination of a robust legal and 

policy framework, sustained funding of a diversified set of research institutions and an 

emphasis on price-based rather than quota-based investment incentives. 

 

Presently (early 2014), a fierce debate is raging in Germany on the impact and further 

adjustment needs of the EEG (see, for example, Diekmann et al., 2012a, EFI, 2014, 

Fraunhofer ISI, 2014). One trigger is the massive and unanticipated expansion of solar PV 

installations under EEG provisions. With PV panel prices down by more than 60 per cent over 

the last six years, the expansion of capacity has exceeded government targets by a factor of 

two. Against this backdrop, political negotiations are ongoing in the new coalition 

government on a proposal to rein in future capacity expansion. Specifically, the proposal 

envisages the introduction of ceilings for future capacity growth, strong reductions of future 

FiT rates and an ambitious degression scale. In the following sections, we aim to contribute 

to a rational basis for decision making on the future of the German EEG, and the system of 

FiTs in particular, by contrasting cost estimates with quantitative indicators for benefits of 

solar PV and wind energy support. 
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2.2. Methodological approach 

2.2.1. Cost assessment 

 

The German feed-in tariff (FiT) approach has become an “export success story” in itself, and, 

to date, has been replicated in essence (with variations in detail) in more than 50 countries 

worldwide. It continues to be widely recognized as a benchmark for effective policy design in 

support of renewable energy expansion. Therefore—and also in view of limited annualized 

data availability for the volume and terms of renewable energy loans, as well as R&D 

expenditures—this paper will focus entirely on seeking to assess the cost-effectiveness of 

this policy instrument.  

 

To this aim, we present estimates on the differential cost of the FiT, that is, the difference 

between FiT rates and the electricity market price. It is important to note that this estimate 

includes distributional effects, and is thus higher than the macroeconomic cost of wind and 

solar PV energy production induced by the FiT. This differentiation is essential, although not 

always made explicit in the literature. The additional macroeconomic costs themselves arise 

from the fact that electricity production from most renewable sources is still more expensive 

than from conventional sources. These costs can be measured as the difference between the 

levelized cost of electricity (LCoE) generated from renewable sources and the LCoE of non-

renewable sources.1 If a FiT is to induce investments in renewable energy, it needs to cover 

these costs and a reasonable markup as compensation for the added risks of such 

investments. The markup, however, does not add to macroeconomic costs. It is rather a 

redistribution of funds from electricity consumers to producers of renewable energy. The 

EEG surcharge thus includes an additional component, which cannot be counted as a 

macroeconomic cost. It may, however, have strong distributive effects. In the case of 

Germany, these are reinforced by the exemptions granted to energy intensive enterprises, 

which raise the burden on the remaining consumer groups. 

 

The shares of the FiT-related differential costs attributable to wind and solar PV are 

calculated in accordance with the following methodology (BDEW, 2013): 

• Based on the average annual FiT paid (in €ct/kWh) for each energy source and the 

volume of electricity fed into the grid, the total amount of paid-out FiT is calculated 

and compared with the prevailing electricity market prices, thus arriving at the 

differential costs. 

• A weighting scheme for individual energy sources is applied with a view to 

addressing fluctuating market prices and temporal feed-in patterns (e.g., peak feed-

in of solar PV electricity around midday, corresponding with peak demand patterns 

                                                 
1 Levelized Cost of Electricity (LCoE) is calculated on the basis of the total expenses 

(investment, operation, maintenance, replacement, insurance etc.) of a project over its 
entire life span. These are discounted to the same reference point and divided by the 

present values of the electricity output. For a critique of various concepts of LCOE and grid 

parity see Bazilian, et al, 2013.  
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and thus high electricity spot market prices, in contrast to more irregular wind feed-

in times).2 

• The “market premium” option introduced in the 2012 EEG amendment is reflected 

in the calculation. 

 

2.2.2. Benefits assessment 

 

After assessing the cost, we proceed to identifying the positive impact of support policies. 

What have been the benefits generated in terms of building up new competitive industries, 

fostering innovation, creating employment, and contributing to fighting climate change? 

Only after having assessed both the costs and benefits of policy interventions in favour of 

renewables will it be possible to meaningfully assess the question of cost-effectiveness.  

 

We rely on two indicators to assess the development of Germany’s competitiveness in wind 

and solar PV: world market share, defined as the share a country has in world exports for a 

given product, and revealed comparative advantage (RCA)3. The RCA is one of the most 

commonly used competitiveness indicators. It compares the export-import ratio of one 

product to that of all products for the same country. The values of RCA can vary hugely and 

theoretically reach infinity. In order to be able to present the values better in graphs, we 

“normalize” them, using the tanh function (tangens hyperbolicus), multiplying the number 

by 100, and using the ln (logarithmic) function. In this approach, positive numbers indicate a 

competitive advantage (see also Eichhammer & Walz, 2009, with data coverage up to 2008). 

 

In terms of data sources, we rely on the United Nations Commodity Trade Statistics 

Database (UNCOMTRADE, 2013).4 The product nomenclature used originates from the 

Harmonized System (HS 1996), which is available at the 6-digit level. Specifically, for wind 

energy and solar PV, it offers the following two product groups: 

 

• 850231: “Other generating sets—wind powered” (referred to below as wind 

converters). 

• 854140: “Photosensitive semiconductor devices, including photovoltaic cells 

whether or not assembled in modules or made up into panels; light emitting diodes” 

(referred to below as solar PV). 

 

Two caveats are in order:  

 

First, it needs to be understood that the RCA approach of measuring competitiveness cannot 

discriminate between specialization patterns rooted in structural economic determinants 

(factor endowments, productivity etc.) and those caused by trade policy interventions. For 

                                                 
2
 The weighting factors applied have changed over time. In 2013, the factor for solar PV was 

98 per cent while for wind energy it was 89 per cent.  
3 This differs from Balassa’s original concept of revealed comparative advantage, which is 

solely based on export performance. 
4 Available at: www.wits.worldbank.org/WITS/WITS/Restricted/Login.aspx 
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instance, a country’s temporary recourse to import restrictions or export dumping practices 

would translate immediately into an improved RCA value. Second, in a few cases annual 

fluctuations of country-specific export and import data are of such an immense magnitude 

that doubts arise as to their accuracy. However, UNCOMTRADE data cannot be verified here 

and must be assumed as being correct. 

 

The measurement of innovation dynamics is notoriously difficult. In the absence of sufficient 

company-level data on R&D investments, international patent data can be a useful proxy 

indicator. However, evidence needs to be treated with care. Results will differ in accordance 

with the database applied, the country in which a patent has been filed, the reliance on 

either patent applications or patents granted as well as the inventor’s or applicant’s home 

country. Also, the significant time required for processing a patent registration and the 

incidence of cross-sectoral patent use (e.g., electronics patents applied in solar PV; 

machinery and automotive patents applied for wind turbine gearboxes) would ideally need 

to be considered. Lastly, patents can only indicate the aspects of the innovation process 

which are based on patented knowledge (Fraunhofer ISI, 2014). They thus provide only part 

of the picture. 

 

The results presented in Figures 7 and 8 are based on the OECD Patent Database (as updated 

in January 2013 with data up to 2010, OECD, 2013). They cover patent applications (not 

patents granted), which are generally considered to be a better indicator for innovation 

dynamics. The relative patent shares (RPS) have been calculated by using the same 

methodology as applied earlier for calculating relative world trade shares. RPS thus 

compares, for a given country, the world share for a patent of one specific technology with 

the world patent share across all technologies. 

 

The solar and wind technology sectors have grown into significant providers of employment 

in the German economy. While no data are available on the number of net jobs created, 

there are reliable data on gross employment creation both directly through capacity 

investment and indirectly through maintenance, operation and other support activities. 

 

To assess the environmental benefits of the FiT, we rely on directly avoided carbon dioxide 

(CO2) emissions for which consistent time series data are available.  Data in Table 3 are 

based on applying specific substitution factors for wind energy and solar PV, respectively. 

This is relevant in view of the fact that the emission intensities of coal, lignite and natural gas 

differ substantially. More specifically, the following substitution patterns are assumed: 

 

• For wind energy:  coal 80 per cent, natural gas 17 per cent and lignite 3 per cent 

• For solar PV: coal 75 per cent, natural gas 22 per cent and lignite 3 per cent 
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3. Results and discussion 

3.1. Costing the Feed-in tariff 

 

Figures 1 and 2 present the shares of the FiT-related differential costs attributable to wind 

and solar PV, respectively.  

 

Figure 1 Annual differential costs in million € under EEG-FiT (2005–2013)
 5

 

 
*Projection 

Source: Data from BDEW, 2013, pp. 37-38. 

 

Figure 2 Annual differential costs in €ct/kWh under EEG-FiT (2005–2013) 

 
*Projection 

Source: Data from BDEW, 2013, pp. 37-38. 

 

                                                 
5 Unless explicitly stated otherwise, all tables and figures refer to the case of Germany. 
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From Figure 1, it can be seen that the combined projected differential costs for wind energy 

and solar PV promotion amount to close to €12 billion in 2013—almost double the amount 

of 2010. Moreover, Figure 1 clearly shows a pattern of a relative increase in the weight of 

solar PV within the total differential cost scenario: between 2005 and 2013, the ratio of total 

solar PV subsidies to total onshore wind subsidies (in € million) rose from 0.4 to 3.0, i.e., 

from less than half to three times as much. This coincided with a narrowing of the same ratio 

in terms of €ct/kWh, as shown in Figure 2: in 2005, the average feed-in differential tariff for 

solar PV was 9.4 times higher than for onshore wind; in 2013 this factor was down to 4.8—

the obvious explanation being the FiT reductions triggered by the phenomenal cost 

decreases and subsequent growth of solar PV electricity generation. While the latter grew by 

a factor of 27, wind-generated electricity just doubled in volume from 2005 to 2013. 
 

However, a holistic look at the composition of electricity prices is necessary with a view to 

putting the EEG-surcharge in perspective. Electricity prices basically result from the costs of 

generation, transmission and distribution; various state taxes and levies; and finally the EEG-

surcharge. In 2013, the latter accounted for 22 per cent of electricity prices for households 

and 35 per cent for industrial consumers. In 2005, the shares were 5 per cent and 7 per cent, 

respectively. Thus, while contributing between one fifth and one third to total prices, the 

EEG surcharge has increased rapidly in recent years to become a pronounced cost factor.   
 

In the context of this growing relative weight, the distributional impact of the EEG-surcharge 

has become a controversial subject. In 2013, the EEG apportionment for electricity 

consumers, i.e., the rise in their electricity price attributable to the FiT, amounted to 5.3 

€ct/kWh. Private households (with an electricity consumption share of roughly one quarter) 

have to bear 35 per cent of the surcharge while the industrial sector (with a consumption 

share of almost 50 percent) accounts for only 30 percent of the surcharge—largely a result 

of exemptions for energy-intensive industries. However, the financial burden to be borne by 

households is easily overestimated. A recent study concludes that in a scenario of a further 

1.3 €ct/kWh increase of the electricity surcharge by 2015, additional expenditures would 

amount to just 0.1 per cent of the average disposable household income, although with a 

slightly regressive effect (Lehr & Drosdowski, 2013). 

 

Furthermore, the subsidies provided by the FiT are not higher than the subsidies paid per 

unit of electricity generated from coal and nuclear power. In essence, a visibility bias is at 

work here. While the subsidies for renewables appear explicitly as electricity surcharge on 

the power bill of end consumers, subsidies for conventional energy sources are embedded in 

state budgets. This applies not only to tax incentives, but more importantly, to the direct 

provision of infrastructure (grid construction and expansion) and even the costly search and 

management process of nuclear waste disposal sites. 
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3.2. Assessing the benefits of the energy transition   

3.2.1. Competitiveness   

 

The notion of competitiveness is one of the most fundamental concepts in economics. 

However, exactly how to define and measure competitiveness and how to delineate its 

meaningful remit has remained highly controversial, in particular when moving up from 

competing firms to competing locations, sectors or entire economies and, for that matter, 

nations. Famously, Krugman (1994) went as far as branding competitiveness as a “dangerous 

obsession” of policy-makers. This may indeed apply to much of the popular debate and its 

oversimplifications, yet it does remain a valid concern—economically and politically—to 

ascertain how goods produced in a country can stand the test of international market 

acceptance and how they fare in relation to the same goods produced elsewhere. This 

section therefore reviews the competitiveness of the German wind energy and solar PV 

industries.  

 

Wind converter competitiveness 

 

Figures 3 and 4 send the resounding message of the build-up over time of a highly 

competitive German wind converter industry. Between 2004 and 2012, its export share in 

the global market surged from 10 to almost 50 per cent - thus assuming the position of 

leading export country. Background data point to a staggering export growth of 65 per cent 

from 2011 to 2012. The low world market share before 2005 are explained by the fact that in 

those years Germany represented a lead market for wind energy – accounting for 45 per 

cent of wind converter installations worldwide in 2002 (down to 7 per cent in 2005). The 

pioneering FiT introduction had created such a strong domestic market pull that early export 

efforts were effectively stifled. A similar pattern can be observed for the revealed 

comparative advantage: its values increased sharply in 2005 and kept growing in the period 

up to 2012. In terms of comparator countries, the recent growth in China’s and Spain’s 

market shares is to be noted, as is the rapid and consistent loss of market shares by 

Denmark. 
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Figure 3 Wind converters: world market shares (percentage) by country 2000–2012 

 

 

 
 

Source: Authors’ calculations based on UNCOMTRADE. 

Note: The four diagrams are identical, differing only in the country highlighted. 

 

Figure 4 Wind converters: Germany’s Revealed Competitive Advantage 2000–2012 

 

Source: Authors’ calculations based on UNCOMTRADE. 
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Beyond the aggregate data presented in the charts, industry analysts underline the 

particularly strong competitive position of German companies when it comes to offshore 

turbines (and offshore wind parks in general), as well as large-scale onshore turbines above 

5 MW capacity. A particular driver of competitive strength originates from a classical 

technology cluster constellation in the four Northern states of Lower Saxony, Schleswig-

Holstein, Bremen and Hamburg.6  This so-called North Western Region Wind Power Cluster 

has grown into a densely interconnected web of more than 300 partners—comprising 

globally leading turbine manufacturers, specialized component suppliers, wind park 

operators, local governments and cutting-edge research institutions. The cluster boasts 

some of the industry’s major innovations (e.g., the development of the 5 MW offshore 

urbine and the offshore test site Alpha Ventus).  

At the same time, the wind cluster also owes some of its success to the long-standing track 

record of Germany’s engineering, machinery and power sectors in general. Without the 

foundation of highly advanced manufacturing capabilities and skills across a whole range of 

industries, the German wind energy sector would not have been able to achieve global 

technological leadership. Arguably, the North Western wind cluster represents an 

internationally unique level of sophistication and comprehensiveness, with business players 

along the entire value chain exhibiting a high intensity of interactions based on shared 

ambitions and quality standards. The cluster represents a genuine public-private partnership 

and is co-funded by state resources and business membership fees. 

 

Solar PV competitiveness 
 

The global solar PV market, even more so than other renewable energy markets, is a highly 

political market shaped by trade patterns that are subject to significant government 

interventions. The recent EU-China trade dispute around subsidized solar panel exports and 

alleged dumping practices bears testimony to this feature. Hence, analyzing revealed 

comparative advantages must be seen with this caveat in mind. 

 

Figures 5 and 6 clearly demonstrate a relatively lower international competitiveness of the 

German solar PV industry compared to the German wind energy industry. A temporary 

increase in the world market share up to 2008 (15 per cent) could not be sustained: in 2012, 

this share fell back to its pre-2005 level of below 10 per cent. Background data show that 

German exports of solar PV were almost cut in half between 2010 (US$8.1 million) and 2012 

(US$4.5 million). Similarly, we can witness a consistent revealed comparative disadvantage 

over the entire period from 2000 to 2012. In terms of comparator countries, the spectacular 

rise of China stands out. By 2010, the country was in the leading position in both indicators 

presented here.  

 

  

                                                 
6 For details see www.windpowercluster.com and the case study by Boeckle et al., 2010. 
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Figure 5 Solar PV: world market shares (percentage) by country 2000–2012 

 

 

 
Source: Authors’ calculations based on UNCOMTRADE. 

Note: The four diagrams are identical, differing only in the country highlighted. 

 

Figure 6 Solar PV: Revealed Competitive Advantage by country 2000–2012 

 
Source: Authors’ calculations based on UNCOMTRADE. 

Note: The two diagrams are identical, differing only in the country highlighted. 
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inverters (converting the direct PV cell current into alternating grid current) stood at 35 per 

cent (GTAI, 2013, fact sheets).  

 

3.2.2. Technological Innovation 

 

A positive value in Figures 7 and 8 indicates that the technology under consideration has a 

superior patent (innovation) position compared to the entire technology portfolio of a 

country. 

 

Figure 7 Wind Energy: Relative Patent Shares by country, 2000–2010 

 

 
 

Source: Authors’ calculations based on OECD Patent Database. 

Note: The four diagrams are identical, differing only in the country highlighted. 
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Figure 8 Solar PV: Relative Patent Shares by country 2000–2010 

 

 

  

Source: Authors’ calculations based on OECD Patent Database. 

Note: The four diagrams are identical, differing only in the country highlighted. 

 

It emerges that in the case of Germany, wind energy—after a trend reversal in 2005—has 

consistently achieved a positive RPS (value of +26 in 2010), while the opposite applies for 

solar PV. From a moderately positive RPS up to 2006, the trend has been downwards 

resulting in negative RPS as of 2009 (with a value of -13 in 2010). Background data show that 

between 2005 and 2010, the absolute number of German wind energy patents more than 

tripled; the number of solar PV patents increased by one quarter. 

 

These results are corroborated by a similar analysis undertaken for 2009 based on European 

Patent Office (EPO) data (Bointner, 2012) in which the gap between a positive RPS value for 

wind technology and a negative RPS value for solar PV technology is even more pronounced. 

They are further substantiated by a recent broader cross-country analysis of green 

technology patents based on World Intellectual Property Organization’s (WIPO) classification 

(Bierenbaum et al., 2012), which led to the following results (for the 1990–2010 period): 
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• While trailing behind the U.S. and Japan in terms of the absolute number of “green” 

patents7 granted, Germany exhibits the highest per capita green patent intensity of 

all countries worldwide. 

• In wind energy technology, Germany is comparatively stronger as an innovator 

(measured as share of cumulative global wind patents) than as an adopter (share of 

installed global wind power capacity) although the difference, with 21 per cent and 

14 per cent respectively, is relatively small. 

• In solar PV technology, Germany is comparatively stronger as an adopter than as an 

innovator, with a 44 per cent share of installed global capacity and only 12 per cent 

share of global cumulative patents. 

 

In general, there seems to be a closer alignment between innovation and deployment trends 

in the case of wind energy, while for solar PV, innovation and deployment hubs may be 

decoupled as PV technology is more easily transposable to countries with the most 

conducive incentives structure for large-scale deployment (Lee et al., 2009). From the same 

study, it emerges that several German wind energy companies are among the top 20 patent 

holders (Enercon8 indeed is  number 1, followed by Siemens at number 7) whereas in the 

case of solar PV patents only Siemens figures at number 20. 

 

3.2.3. Employment Creation 

 

Of the almost 380,000 total jobs created by renewable energies in 2012 (for the first time, 

down from the previous year), more than half (54 per cent) were accounted for by solar PV 

and wind energy alone (Table 1). Based on the two sources below Table 1, the following 

structural features stand out: 

 

• The share of new jobs attributable to the Renewable Energy Sources Act (EEG) 

has grown over time: from 61 per cent in 2004 to 71 per cent in 2012. More 

specifically, of the 268,000 jobs created through the EEG in 2012, wind energy 

accounted for 117,900 and solar PV for 87,800 with the remainder originating 

from biomass plants. 

• While the majority of jobs stem from investments into solar and wind 

installations, the share of jobs related to maintenance and operation services is 

growing. This applies in particular to onshore wind, where the share of 

maintenance and operations jobs is as high as 16 per cent. For solar PV, the 

same share stands at 10 per cent. Despite the 2012 slump in new solar 

installations, maintenance and operation jobs kept growing. 

                                                 
7
 According to WIPO’s Green Inventory, “green patents” cover alternative energy production 

patents in 13 sectors: solar, wind, geothermal, biofuel, biomass, fuel cell, hydro, synthetic 

gas, integrated gasification combined cycle, man-made waste, mechanical power from 
muscle energy, natural heat and waste heat. 
8 Enercon patents are registered under the name of Aloys Wobben, who founded the 

company in 1984 and has remained its owner to date. 
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• Export markets play an essential role in employment creation. For all 

renewables, in 2012 the domestic market generated 59 per cent of investment-

related jobs, with export markets accounting for 41 per cent. In view of the 

above-average export ratio of electricity-generating technologies, export-driven 

employment must be even higher for wind energy and solar PV. 

• The regional distribution of employment is more dispersed than often assumed. 

While there is a basic pattern of more wind installations in the Northern and 

Eastern coastal regions and a higher solar PV intensity in Southern federal states, 

component-driven employment is often located in the traditional industrial 

centres. At the same time, an important inequality-reducing impact is 

noticeable: In those Eastern federal states suffering from the highest 

unemployment ratios nationwide (with the exception of city states), the relative 

importance of solar and wind employment is most pronounced. Specifically, this 

applies to Mecklenburg-Western Pomerania, Saxony-Anhalt and Brandenburg 

with unemployment rates (June 2013) of 10.8 per cent, 10.7 per cent and 9.5 per 

cent, respectively. 

• In terms of the skill profile of the labour force (see Table 2), employment in both 

the solar PV and wind energy industry is very much in line with the comparative 

advantage of a sophisticated labour market in a high-tech economy like 

Germany’s. While there is a negligible share of unskilled labour, in both the wind 

and particularly the solar PV industry the share of university-degree staff is 

around three times as high as the national industry average. 
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Table 1 Employment created by wind energy and solar PV, 2010–2012 

 Investment-related jobs Jobs in maintenance 

and operation 

Total jobs 

Year 2011 2012 2011 2012 2011 2012 

Wind 

- onshore 

- offshore 

82,600 

 

 

98,600 

81,300 

17,300 

18,500 

 

 

19,300 

18,600 

700 

101,100 

 

 

117,900 

99,900 

18,000 

Solar PV 103,300 78,900 7,600 8,900 110,900 87,800 

Total renewable 

energies 242,000 227,100 75,800 80,700 381,600 a 377,800 a 

Total share of 

wind (per cent) 

34 43 24 24 26 31 

Total share of solar 

PV (per cent) 

43 35 10 11 29 23 

a Includes also jobs created by fuel supply activities (biogas, biomass, biofuel), as well as related 

jobs in public institutions (R&D, administration). 

Sources: Based on data in Federal Ministry for the Environment, 2012; O’Sullivan, Edler, Bickel, 

Lehr, Peter, & Sakowski, 2013. 

 

Table 2 Skill profile of employment in the wind energy and solar PV sector (survey-based; 

percentage shares) 

 No vocational 

training 

Completed 

vocational training 

University degree 

Wind energy 0.9 79.9 27.1 

Solar PV 5.8 81.7 34.7 

Total industry 15.0 69.5 9.9 

Source: Federal Ministry for the Environment (BMU), 2012. 

 

3.2.4. Environmental Benefits from Avoided Emissions 

 

As emphasized in Section 2, from the outset one of main drivers of renewable energy 

promotion in Germany has been the political commitment to achieving ambitious goals of 

reducing greenhouse gas emissions in the fight against climate change, as well as reaching 

environmental objectives in terms of reducing various pollutants. Hence, the question of 

exactly what level of avoided emissions can be attributed to the growing deployment of 

wind energy and solar PV is of particular importance. 
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In Table 3, we take a look at directly avoided carbon dioxide (CO2) emissions for which 

consistent time series data are available. It emerges that between 2005 and 2012 the 

amount of avoided CO2 emissions has more than doubled from 23.8 million tonnes to 56.5 

million tonnes. The contribution of wind energy and solar PV to reducing Germany’s carbon 

footprint thus is of significance at the broader national level: In 2012, both sectors combined 

avoided CO2 emissions amounting to 6.9 per cent of total CO2 emissions, or 17.8 per cent of 

CO2 emissions caused by electricity generation. When considering the entire 2005 to 2012 

period, more than one tenth (11.3 per cent) of electricity-related CO2 emissions could be 

prevented. 

 

Table 3 Directly avoided CO2 emissions from wind energy and solar PV, 2005 to 2012 (in 

1,000 tonnes)
a
 

 

Year Wind  Solar PV Wind plus 

solar PV 

Share of total 

CO2 emissions 

(per cent) 

Share of CO2 

emissions from 

electricity generation 

(per cent) 

2005 23,227 616 23,843 3.3 7.4 

2006 24,038 1,341 25,379 2.9 7.7 

2007 30,367 1,818 32,185 3.8 9.5 

2008 28,989 2,978 31,967 3.8 10.0 

2009 28,211 4,435 32,646 4.2 11.2 

2010 27,244 7,792 35,036 4.2 11.5 

2011 35,239 12,848 48,087 6.0 15.8 

2012 b 35,489 20,998 56,487 6.9 17.8 

a According to the sources given below, wind avoids 726 gCO2/kWh and solar PV 613 

gCO2/kWh. 
b Total CO2 emissions and CO2 emissions from electricity generation are estimates. 

Sources: Compiled and calculated from AGEE-Stat, 2012; Umweltbundesamt, 2013a; 

Umweltbundesamt, 2013b. 

 

Numerous life cycle assessments of the ecological balance sheet of alternative energy 

sources have been undertaken in recent years. The overall result of a comparatively much 

smaller carbon and ecological footprint of wind energy and solar PV than, for example, coal-

based electricity, is unequivocal. Relevant data for Germany lead to the conclusion that in 

terms of CO2, coal-based electricity generates around 100 times more emissions per unit 

than wind energy and 10 to 20 times more than solar PV.  
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In assessing the ecological impact of the FiT, it must be noted that greenhouse gas emissions 

in the European context are traded under the European Emissions Trading Scheme (EU ETS). 

Any FiT-induced lowering of CO2 emissions reduces demand for certificates, cuts their price, 

and thus discourages investments in emission reductions elsewhere. On the other hand, the 

lower price of certificates opens political space for tighter ETS caps without threatening the 

competitiveness of companies. Without such tighter caps, however, the parallel operation of 

FiT and ETS will crowd out the former’s emission reduction benefits—at least for those 

emissions traded under the ETS. 

 

3.3. Contrasting Wind and Solar PV 

 

In Figure 9, a stylized summary of the main quantitative results of Section 3 is presented, 

complemented by the EEG differential costs as proxy for the additional cost of wind and 

solar. While not amounting to an objective assessment of each sector, the comparison 

between wind energy and solar PV would indicate that the wind energy sector is leading in 

all performance dimensions: employment creation, competitiveness, technological 

innovation and avoided CO2 emissions—and does so with lower subsidy levels. 
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Figure 9 Stylized profile of wind energy and solar PV by performance dimension (latest 

available years) 

Source: Based on Tables 1 and 3, and Figures 2, 4, and 6-8 in this paper.  

Note: An appropriate scaling was introduced for each performance dimension. Specifically, 

the following values were defined as 100 per cent:  

• FiT differential costs: 30 €ct/kWh  

• Employment: 150,000 jobs  

• RCA: 200 (based on -100 to +100 range) 

• RPS: 200 (based on -100 to +100 range) 

• CO2 emissions avoided: 50 million tonnes 

 

Also in terms of medium-term projections of the levelized cost of electricity (LCOE) for wind 

energy and solar PV in Germany (Fraunhofer ISE, 2012), onshore wind plants are considered 

to remain the most cost-effective renewable energy technology. Currently at 8 €ct/kWh (at 

2000 full-load hours per year), the LCOE for onshore wind energy is forecast to marginally 

decrease further to 7 €ct/kWh in 2030. Solar PV systems are expected to remain more 

costly, however, they are coupled with much faster cost decreases due to a steeper 

technological learning curve.  Overall, this would lead to onshore wind plants becoming cost-

competitive with a conventional (fossil plus nuclear) electricity mix by 2017, while the same 

would apply for ground-mounted solar PV systems by 2022.  

 

The above stylized comparison of solar PV and wind energy has a number of broader 

industrial policy implications, which will be discussed in Section 4. 

FiT differential costs

Employment

Revealed Competitive 

Advantage
Relative Patent Share

CO2 Emissions 

Avoided 

Solar

Wind
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4. Conclusions and policy implications 

 

While green industrial policy in Germany targets many sectors (for example resource-

efficient environmental technologies, waste management, biofuels production or electro-

mobility), the energy transition (Energiewende), with its focus on renewable energy sources 

is certainly the most prominent national project. It places Germany among the most 

ambitious countries worldwide in the promotion of a transition to sustainable energy. 

However, public debate in Germany about the Energiewende in general and its different 

features in particular is highly politicized, and often driven by ideology or vested interests. 

This paper has sought to provide a balanced assessment drawing on the best available 

evidence and quantifying explicitly what costs and benefits are excluded or included. 

 

Germany has a variety of policies in place to support the Energiewende. Among them are 

mechanisms targeting all stages of renewable energy technology development from basic 

research to deployment. The system of feed-in tariffs (FiT) is the core element of Germany’s 

policy package, and as such deserves closer analysis. In the energy policy community, there 

is widespread agreement that the FiT mechanism in general, and its application in Germany 

in particular, has proven to be an exceedingly effective policy instrument for pushing 

renewable energies into the market (Haas et al., 2011; Held et al., 2006; Matschoss 2013). Its 

efficiency, however, hinges on the appropriate determination of tariff levels. Based on a 

comparative assessment of renewable energy support policies in its member states, the 

European Commission concludes that “well-adapted feed-in tariff regimes are generally the 

most efficient and effective support schemes for promoting renewable electricity” (EC, 2008, 

p.3). Experiences in the emerging countries have shown that competitive bidding may be a 

suitable approach to identify the actual levels of such well-adapted feed-in tariffs (Becker & 

Fischer, 2013, Pegels, 2014), and Germany could be well advised to ‘re-import’ some such 

elements when reforming its own support scheme. 

 

The German FiT scheme has been characterized by a long contract period (20 years), 

guaranteed grid priority, technology-specific tariffs on a degressive scale coupled with a 

direct selling option (market premium) and recently, provisions for tariff evolution in 

response to deployment trends (flexible ceiling). These design elements have created a 

stable investment environment and hence a strong readiness of capital markets to finance 

renewable energy projects at relatively low interest rates. Furthermore, the technology 

specificity—with differing FiT subsidy bands for each source of renewable energy—has had 

the advantage of encouraging the early deployment and upscaling of a wide spectrum of 

technologies. On the downside, it has not allowed for a focus on the most cost-efficient 

decarbonization technologies. A premium was thus placed deliberately on creating a broad 

foundation for various renewable energy technologies to develop and become commercially 

viable. However, this premium seems to have led to a bubble in the German solar PV 

manufacturing industry. Obviously, the critical challenge is to identify a sufficiently high 

subsidy level for investments to be triggered without creating excessively high policy rents 

(Pegels, 2014). This presupposes correct assumptions about future technological learning 
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curves and price trends as a basis for taking well-informed decisions about an optimal tariff 

degression scale. The assumptions in the case of solar PV did not correspond to the 

considerable cost reductions of PV installations since 2009 (Bundesverband Solarwirtschaft, 

2013). 

 

Figure 9 seemingly presents an unequivocal outcome of the comparison between wind and 

solar support, showing the superior performance of wind energy for all indicators. However, 

the policy implications of these empirical findings are less clear-cut than they may appear at 

first glance. Should all eggs be put into the wind basket? In the direct comparison of wind 

and solar energy, the answer could be “yes,” on grounds of cost-efficiency and broader 

benefits. Yet just like in the case of financial investments, there are advantages to be had 

from diversification.  Hence, Figure 9 needs to be interpreted dynamically and from a 

systemic perspective. While wind energy currently performs better, it may be wise to also 

support solar PV and, for that matter, a variety of other sources of renewable energy. The 

technology learning curve of solar PV may still promise strong cost reductions, while wind 

energy is already mature (Diekmann et al., 2012b). The solar resource and thus deployment 

potential in other world regions may further support these reductions. Once a particular 

energy source achieves grid parity, deployment may increase steeply and give other 

performance indicators a boost as well.  Technologies in their earlier stages may also hold a 

higher potential for innovation than their mature counterparts. This includes solar PV, but 

also such other early stage renewables as offshore wind or tidal and wave energy. 

Innovation as an aim of green industrial policy could thus benefit from the diversified 

support of renewable energy technologies.  

 

However, diversification as such does not guarantee success in fostering innovation and 

competitiveness. Has the German policy-induced creation of a lead market led to a first-

mover advantage or disadvantage?9 Is it more a question of the early bird catching the worm 

or the second mouse getting the cheese? On the one hand, Germany has succeeded in 

building up world-class renewable energy technologies and has captured large segments of 

the world market. If well exploited, this lead position can secure competitiveness, 

employment and positive innovation dynamics for years to come. On the other hand, there 

are strong elements at play here of other countries appropriating part of the benefits of 

Germany’s lead market role. This may be seen as a “successful internationalization of the 

photovoltaic strategy (and) . . . a tribute to Germany’s contribution to meeting global energy 

and climate challenges” (Diekmann et al., 2012a, p. 3). Alternatively and in a more pointed 

manner, the verdict may be that “German households have, through the renewable 

subsidies they pay, made the world a gift of solar technology which China has now been 

happy to exploit” (Buchan, 2012, p.4). 

 

It is hard to escape the conclusion that the deployment of solar PV in particular has in recent 

years been out of line both with its long-term expansion potential and its reasonable relative 

                                                 
9 For a more thorough discussion of lead market strategies see the results of the Lead 

Markets project of the Centre for European Economic Research (ZEW) at 

http://kooperationen.zew.de/en/lead-markets/project-description.html. 
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weight within the renewable energy mix—in a country with less-than-ideal climatic 

conditions for heavy reliance on solar energy. Also, in the harsh judgment of Eicke Weber, 

Director of Fraunhofer ISE, “Germany’s energy policy has created a market for 

photovoltaics—not an industry” (Paris Tech Review, 2012, p.5).  This indicates that 

deployment under the soft conditions of heavy subsidies was given priority, without 

sufficient attention to forming an innovative industry pushing the technological frontier. In a 

nutshell: expansion was put above upgrading. In the analysis of the CEO of SunnysideUp, a 

German solar consultancy, too many companies decided to “deliver a standard product in a 

growing market . . . we will lose if we just follow this race on a price level” (PV Magazine, 

2011). 

 

However, at the broader level of the energy system and within a supply scenario increasingly 

based on renewable energy, a variety of different intermittent sources in the electricity grid 

are required to support overall grid stability—the sun may shine when the wind does not 

blow. This contributes to security of supply, in particular if investments in transmission lines 

keep pace and connect geographically dispersed locations of renewable electricity 

generation. Unfortunately, German investments in grid expansion and solutions for 

electricity storage lag behind requirements. At the same time, Germany will need to deploy 

a variety of renewable energy sources if it takes the Energiewende seriously. The generation 

potential of onshore wind energy alone will not suffice to cover the full requirements of 

German electricity demand. 

 

The systemic perspective cannot, however, be restricted to renewables: the energy sector 

must be seen in its entirety. The pace of German renewable energy deployment has taken 

many actors by surprise. This has led to unintended effects on energy planning, which in turn 

affect the overall aims of green industrial policy, in particular its environmental dimension. 

To safeguard energy security, Germany currently builds two energy systems in parallel: a 

base-load focused, centralized and fossil fuel-based system; and an intermittent, 

decentralized and renewable system. These systems increasingly interact. To compensate 

for the phasing out of nuclear power, the German government has decided to support highly 

efficient new coal and gas fired power stations, financing this support out of the Energy and 

Climate Fund (Deutsche Bundesregierung, 2012). Together with the unexpectedly high 

generation from renewable sources, Germany currently produces much more electricity 

than it consumes. In 2012, electricity exports exceeded imports by a record level of 22.8 

terawatt hours (TWh), up from 6 TWh in 2011 and 17.6 TWh in 2010 (Statistisches 

Bundesamt, 2013). This oversupply, combined with low input prices and the low price of 

carbon emission certificates traded under the European Emissions Trading Scheme, reduces 

electricity prices to the extent where at times only the cheapest sources are still competitive, 

that is, hard coal and, in particular, lignite in the case of Germany. Lignite, however, is 

exceedingly damaging to the environment and human health. As a result, total German 

carbon dioxide emissions have been stagnating in the past four years, and even rising in 

2012 (Umweltbundesamt, 2013b). Paradoxically, the rapid deployment of renewables thus 

does not currently lead to decreasing total greenhouse gas emissions. 
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At the same time, the low electricity prices at the electricity stock exchange do not improve 

the competitive position of small and medium enterprises. Including 99 per cent of German 

enterprises and providing more than 60 per cent of jobs (May-Strobl & Haunschild, 2013; 

BMWi, 2012), the Mittelstand is widely considered as the backbone of Germany’s economy. 

However, their electricity prices are among the highest in Europe—at least partly due to the 

added cost of renewables (DIHK, 2012). The blow to the competitiveness of the largest 

electricity consuming companies is of course softened by exemptions from the electricity 

surcharge. These, however, call the equity of the current support system into question, since 

they raise the burden on households and small and medium enterprises.  

 

To reach the broader aims of green industrial policy and manage the energy transition 

effectively, Germany will need to address the systemic challenges outlined above. Special 

emphasis is to be put on three broader dimensions: institutional fragmentation, interacting 

policy schemes and transformational alliances. 

 

Institutional Fragmentation 

 

As discussed by Zelli (2001) and Zelli and van Asselt (2013) in the context of climate 

governance, institutional fragmentation may have negative implications for effectiveness, 

legitimacy and fairness of policies. Since the promotion of wind energy and solar PV in 

Germany is part of a much more fundamental agenda of transitioning to a decarbonized 

development trajectory, issues of institutional fragmentation and distributed responsibilities 

are particularly relevant. The contribution of renewables to electricity generation has 

reached proportions that call for simultaneous policy attention to capacity expansion, 

competitiveness, technological innovation, grid management and storage capacities, i.e., a 

systemic perspective. However—and this may be surprising for a country often portrayed as 

a poster child of institutional effectiveness—the current institutional setup leaves a lot to be 

desired. Several federal ministries have important roles to play, and specialized subsidiary 

agencies are proliferating. There is thus a strong case for pooling the political 

responsibilities. This could be all the more important given that in the typical German 

scenario of a coalition government, there is a high likelihood of interlinked functions being 

spread across political party lines.  

 

Interacting Policy Schemes 

 

The FiT policy tool as the cornerstone of Germany’s energy policy is not operating in 

complete isolation. In fact, it runs parallel to the European Emissions Trading System (ETS). 

The interactions between both policy spaces thus need to be analyzed.  On the one hand, it 

can be argued that any FiT-induced lowering of CO2 emissions would lead to the availability 

of additional certificates, which, once sold, would generate corresponding emissions 

elsewhere. On the other hand, the political decision of where exactly to fix a cap for 

emissions may itself be partly influenced by anticipating trends of future renewables 

capacity (Lechtenböhmer & Samadi, 2011, p. 10). In essence, the parallel operation of FiT 

and ETS will crowd out most of the former’s emission reduction benefits—not, however, the 

other benefits it creates.  
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A second dimension of policy interaction is related to transcending national boundaries. 

Quite obviously, the multiplicity of national FiT schemes, for example in the European Union, 

is an ineffective response to the potential of a unified European energy policy. A unified 

European, or even trans-Mediterranean, grid could largely balance out inherent grid 

instability caused by intermittent renewable energy sources. At the same time, there is a 

danger of a conceivable common approach being designed as the lowest common 

denominator of conflicting country interests. As a result, the more ambitious energy policy 

of Germany as a lead market for renewables may be severely compromised.  

 

Transformative Alliances 

 

Rightly or wrongly, green industrial policies in Germany are almost equated today with the 

energy transition. We are dealing with a national project of the first order. There are winners 

and losers, proponents and adversaries. In this economically and politically highly charged 

setting, the formation of transformative alliances and the definition of a compelling 

narrative are key (Schmitz et al., 2013). Such alliances may see unlikely bedfellows. Just as 

parts of the business establishment are embracing the transition and investing into the 

energy technologies of the future, heavy resistance is coming from parts of the traditional 

green movement. Alliances will thus have to go beyond conventional boundaries.  

 

Having created the largest lead market for upscaling deployment and having brought down 

prices of renewables is not going to be a winning argument in the public discourse. The 

German FiT-driven renewables revolution may have been “arguably the most successful 

development cooperation programme ever in this field” (Hombach, 2013), yet this is not the 

yardstick used by the public at large when assessing costs and benefits. In Germany, any 

transformative alliance can only succeed if it builds on a platform of employment, 

competitiveness and innovation. Furthermore, the creation of decentralized energy systems 

and hence strengthened regional and local economic structures (above all in economically 

weak regions) should be highlighted more than hitherto. 
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